Advances in Parallel Computing
نویسندگان
چکیده
State-of-the-art dense linear algebra software, such as the LAPACK and ScaLAPACK libraries, suffer performance losses on multicore processors due to their inability to fully exploit thread-level parallelism. At the same time the coarse-grain dataflow model gains popularity as a paradigm for programming multicore architectures. This work looks at implementing classic dense linear algebra workloads, Cholesky factorization and QR factorization, using dynamic data-driven execution. Two emerging approaches to implementing coarse-grain dataflow are examined, the model of nested parallelism, represented by the Cilk framework, and the model of parallelism expressed through an arbitrary Direct Acyclic Graph, represented by the SMP Superscalar framework. Performance and coding effort are analyzed and compared agains code manually parallelized at the thread level.
منابع مشابه
Green Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملImproving the palbimm scheduling algorithm for fault tolerance in cloud computing
Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...
متن کاملParallel computing using MPI and OpenMP on self-configured platform, UMZHPC.
Parallel computing is a topic of interest for a broad scientific community since it facilitates many time-consuming algorithms in different application domains.In this paper, we introduce a novel platform for parallel computing by using MPI and OpenMP programming languages based on set of networked PCs. UMZHPC is a free Linux-based parallel computing infrastructure that has been developed to cr...
متن کاملStatic Task Allocation in Distributed Systems Using Parallel Genetic Algorithm
Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...
متن کاملCloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کاملOptimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm
Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable ...
متن کامل